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1 Linearization

This note looks at linearization and log-linearization. If you want to understand
the basics, read the whole document. If you are well trained in math, you can
jump to the "Getting clever" section towards the end to get the basic idea.

1.1 Ordinary linearization

Taylors theorem states that a scalar function f (x) can be approximated by

f (x) ≈ f (x̄) + f ′ (x̄) (x− x̄) .

Similarly, a function of n variables can be approximated to a first order by

f (x1, ..., xn) ≈ f (x̄1,..., x̄n) +

n∑
i=1

∂f

∂xi
(x̄1,..., x̄n) (xi − x̄i) .

Example 1 Let f (x1, x2) = x1x2 + x3
1 such that

∂f

∂x1
= x2 + 3x2

1

∂f

∂x1
= x1

f (x1,x2) ≈ f (x̄1, x̄2) +
(
x̄2 + 3x̄2

1

)
(x1 − x̄1) + x̄1 (x2 − x̄2)

Let’s now linearize (notice, NOT log-linearize) an Euler equation. Remember
the program, we find the steady-state, and linearize the model around that
steady-state.
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Example 2
1

It
= βEt

((
Ct+1

Ct

)−σ
1

Πt+1

)
We use brute force and linearize both sides of this equation. First, the steady
state is

1

Ī
= β

(
C̄

C̄

)−σ
1

Π̄

Let us assume that there is a monetary policy rule in place with a gross inflation
target of 1 which will imply Π̄ = 1, which means that steady state inflation is
zero and hence we see that Ī = β−1, which by the way will also be the steady
state real interest rate. Now we linearize the left hand side. Think of the left
hand side as f (I) = 1/I, with f ′ (I) = − 1

I2 . Hence, Taylors theorem then states
that

1

It
≈ 1

Ī
− 1

Ī2

(
I − Ī

)
Now we move to the right-hand side and let g (C,C1,Π) = β

(
C1
C

)−σ 1
Π . Hence,

∂g

∂C
= βσC−σ1 Cσ−1Π−1

∂g

∂C1
= −βσC−σ−1

1 CσΠ−1

∂g

∂Π
= −β

(
C1

C

)−σ
Π−2

Using that Π = 1 and that C̄ = C̄1 we find

g
(
C̄, C̄1, Π̄

)
= β

∂g

∂C

(
C̄, C̄1, Π̄

)
= βσC̄−1

∂g

∂C1

(
C̄, C̄1, Π̄

)
= −βσC̄−1

∂g

∂Π

(
C̄, C̄1, Π̄

)
= −β

Hence Taylors theorem gives

g (C,C1,Π) ≈ β + βσC̄−1
(
C − C̄

)
− βσC̄−1

(
C1 − C̄

)
− β (Π− 1)

Combining these results, we find that the linearized Euler equation can be written

1

Ī
− 1

Ī2

(
It − Ī

)
= β+Et

(
βσC̄−1

(
Ct − C̄

)
− βσC̄−1

(
Ct+1 − C̄

)
− β (Πt+1 − 1)

)
Next, we tidy up using steady state relations. First, since 1

Ī
= β we see that the

constant on both sides drops out. This is a general result, if you don’t get the
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constants to cancel, you have made an error somewhere. Furthermore, we can
replace 1

Ī2
with β2 and hence we notice that we can divide through with β to find

−β
(
It − Ī

)
= Et

(
σC̄−1

(
Ct − C̄

)
− σC̄−1

(
Ct+1 − C̄

)
− (Πt+1 − 1)

)
This is something which resembles a "usual" Euler equation. But notice that we
look at absolute differences between for example consumption and the steady state
value. Hence, levels matters for interpretations of impulse-response functions.
The typical way to proceed would be to define gaps and solve the full model, and
compute impulse-response functions to the structural economic shocks. That is,
for example, how does consumption react to a technology shock. But to make
those results comprehencible, we would have to scale the result by the steady
state. An alternative is to use the following trick:(

It − Ī
)

= Ī

(
It
Ī
− 1

)
The gap in the last parenthesis is now the percentage deviation from steady state.
If we use the same trick with all variables we can rewrite the equation as

−βĪ
(
It
Ī
− 1

)
= Et

(
σC̄−1C̄

(
Ct
C̄
− 1

)
− σC̄−1C̄

(
Ct+1

C̄
− 1

)
− (Πt+1 − 1)

)
which simplifies to (using βĪ = 1)

−Ît = Et

(
σĈt − σĈt+1 − Π̂t+1

)

Ît =
It
Ī
− 1

Ĉt =
Ct
C̄
− 1

which can be rewritten as

Ĉt = EtĈt+1 − σ−1
(
Ît − Π̂t+1

)
which is very similar to the Euler equation (10) on page 21 in Gali, if we are
willing to agree that the percentage difference in our definition above can ap-
proximately be written as log It − log Ī. That is, Ît = log It − log Ī. Formally,
this can be done by noting that

It
Ī

= exp
(
log It − log Ī

)
and since Taylors theorem states that exp (x) is approximately 1 + x around 0
(which is the relevant point of approximation since we approximate the above
around Ī. We hence see that

exp
(
log It − log Ī

)
≈ 1 + log It − log Ī
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and hence that

Ît =
It
Ī
− 1 ≈ log It − log Ī .

Using this rewrite, we see that we can replace the deviations from steady
state to get

logCt − log C̄ = Et
(
logCt+1 − log C̄

)
− σ−1

(
log It − log Ī − log Πt+1

)
which simplifies to

logCt = Et logCt+1 − σ−1
(
log It − log Ī − log Πt+1

)
This is exactly Galis equation (10).
A more direct way to arrive at this equation, without the step where we

approximate the percentage change, is to instead rewrite the original model in
terms of logs and then linearize. This is called log-linearization.

1.2 Log-linearization

We again start from the Euler equation

1

It
= βEt

((
Ct+1

Ct

)−σ
1

Πt+1

)
.

Notice that It = exp (log It) , where we let log x mean the natural logarith of
x, that is, with the base e. This is the convention used in Matlab. Use this to
rewrite the above model as

1

exp (log It)
= βEt((exp (logCt+1) / exp (logCt))

−σ 1

exp (log Πt+1)

Using standard rules for logs (such as log xα = α log x etc.),

exp (− log It) = βEt (exp (−σ logCt+1 + σ logCt − log Πt+1))

Define new variables according to x = logX to write this as

exp (−it) = βEt exp (−σct+1 + σct − πt+1)

Since we have only trivially manipulated this equation, the steady state
remains the same, meaning Ī = β−1 which in logs means ı̄ = − log β.
Now we approximate the above equation, but directly in terms of for example

it in deviation from ı̄. Brute force we do this variable by variable by applying
Taylors theorem (this time I ignore the constant as you know this will drop out)
to find

− exp (−ı̄) (it − ı̄) = −βσEt exp (−σc̄+ σc̄− π̄) (ct+1 − c̄) + βσ exp (−σc̄+ σc̄− π̄) (ct − c̄)
−βEt exp (−σc̄+ σc̄− π̄) (πt+1 − π̄)
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(where the equation streaches out over two lines!). Using that ı̄ = − log β, and
that π̄ = log Π̄ = 0 in the zero steady state inflation case, we can rewrite the
above equation as

−β (it − ı̄) = −βσEt (ct+1 − c̄) + βσ (ct − c̄) + βEt (πt+1 − π̄) (1)

This time, we define the percentage deviation from steady state as

x̂t ≡ logXt − log X̄.

With these definitions, you can easily manipulate (1) to recover equation (10)
in Gali.

2 Getting clever

Brute force always works, but is often tedious. Many times, there are clever
tricks to use. Here follows a compressed introduction to log-linearization and
some useful tricks.
We start by noting that

X = exp (logX)

hence,
∂X

∂ logX
= exp (logX) = X

The chain-rule then implies that

∂f (X)

∂ logX
= f ′ (X)X (2)

and hence Taylors theorem gives

f (X)− f
(
X̄
)
≈ f ′

(
X̄
)
X̄
(
logX − log X̄

)
= f ′

(
X̄
)
X̄x̂t (3)

Notice that if we do a total differential of f (X), we get

f ′
(
X̄
)
dX

f ′
(
X̄
)
X̄
dX

X̄
(4)

Comparing (3) and (4) we arrive at the following very useful lemma.

Lemma 3 Practical log-linearization. Assume an expression of the form g (X) =
f (X) where X is a vector. If we take a total differential, where the partials are
evalutated at steady-state, and replace dXi

X̄i
with x̂i ≡ logXi− log X̄ then this will

be identical to the log-linearized equation.
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Example 4 Simple real Euler-equation again. Assume that 1
Ct

= βEt
1

Ct+1
Rt.

Apply the above lemma to log-linearize this equation:

− 1

C̄2
dCt = −βR̄

C̄2
EtdCt+1 + β

1

C̄
dRt

− 1

C̄

dCt
C̄

= −βR̄
C̄
Et
dCt+1

C̄
+ β

R̄

C̄

dRt
R̄

−ĉt = −Etĉt+1 + r̂t

Next, notice that
∂ log f (X)

∂X
=

1

f (X)
f ′ (X) (5)

Combining these results shows that

∂ log f (X)

∂ logX
=
∂ log f (X)

∂X

∂X

∂ logX
=

1

f (X)
f ′ (X)X (6)

Suppose you have an equation of the form

g (X) = f (Y )

then you know that in steady state,

g
(
X̄
)

= f
(
Ȳ
)
. (7)

Use (2) and Taylors theorem to log-linearize both sides to find

f ′
(
X̄
)
X̄x̂t = g′

(
Ȳ
)
Ȳ ŷt

Then divide this equation with (7) to get

f ′
(
X̄
)
X̄

f
(
X̄
) x̂t =

g′
(
Ȳ
)
Ȳ

g
(
Ȳ
) ŷt

Notice that you can use this for direct computation: calucate the partials, divide
by the steady state of f , multiply with the steady state of X̄ and there you have
the coeffi cient in front of x̂t in the log-linearization, without having to rewrite
the model in the cumbersome exp (log (X)) notation.
Even better, (6) implies that you can find 1

f(X)f
′ (X) imediately by instead

calculating ∂ log f(X)
∂ logX . If f (x) is log-separable in the arguments (as is often the

case), this greatly reduces computational burden.

Example 5 The Euler equation clever:

1

It
= βEt

((
Ct+1

Ct

)−σ
1

Πt+1

)
.
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Notice that this equation is log-separable (ignoring the expectations term, which
we come back to), and hence we can think of this as

f (I) = g (C,C1,Π)

To be clever, we use the above approach and first take logs to find that

log(LHS) = − log It.

Then, we immidiately see that the coeffi cient in front of ı̂t is ∂
∂ log It

(− log It) =
−1. Similarly, we log the right-hand side to find

log(RHS) = log β − σ (logCt+1 − logCt)− log Πt+1

and easily recover the coeffi cient in front of Ct+1 as −σ. Proceeding like this,
we have showed that

−ı̂t = −σEtĉt+1 − σĉt+1 − Etπ̂t+1

which again can be manipulated to recover equation (10) in Gali, but this time
with very little effort.

For a more detailed exposition, see the following chapter by Harald Uhlig:
http://www.sfu.ca/~kkasa/uhlig1.pdf
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