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1 The setup

We assume that we have a model that can be written in the following form:

T1,t4+1 —A L1t Et+1
= + 1
[ Eixo 141 } [ T2t } [ 0 } (1)
where x4 is a ny x 1 vector with predetermined - or state - variables and x3 ;
is a no x 1 vector of jump variables.

Let us pause for a moment and think about what this representation means.
For the state variables,

Tipp1 = Anzie+ Az + e
Eixiio = Agixi+ Aoy

The first equation illustrates what it means that z; is predetermined: once
the values of the current states and jump variables are determined, 111 is
predetermined, up to the effect of the exogenous innovation. Perhaps the most
natural example of a state variable is the capital stock. The capital accumulation
equation is written

Kt+1 = (1 —5)Kt +It

where I is investment. In this model, I; is the jump variable to be determined
at time t. Once [I; is known, Ky, 1 is fully determined. This equation then fits
in the notation of the system with x; ; = Ky, 2o = It, A11 =1-6, A2 =1,
err1 = 0. Of course, further equations would be neded to close this model fully.

Example 1 A reduced form of the NK model. Consider the NK Phillips curve,
but for simplicity assume that the output-gap follows an exogenous process:
Ty = BEimip1 + Kx

Ty = pri—1+E¢
We rewrite this model to fit the notation above:
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2 Definition of solution

What do we mean by a solution to the system of difference equations (1)? There
are two, very related, definitions of equilibrium.

Definition 2 Solution. A solution to (1), given an initial condition x1,0 and
a sequence of the vector of disturbances {e;}]° are sequences of {x1,}]° and
{xa,t }7°. In normal language, this just say that if we get initial conditions and
a string of exogenous shocks, the solution will be how all the variables in the
system evolve over time.

Definition 3 Solution, alternative. A solution to (1) is provided by the func-
tions f(x14) and g (x14) such that

Tii41 = [f(z1e)+e

Tor = g(T14)-

Here we see that the functions summarize the solution concept in the first def-
inition: given initial conditions and {e:}]°, f and g allows us to fully recover
{z1, }7° and {xa, }7°. f tells us how the state variables evolve as a function
only of their own lag + shocks. g tells us how to recover the jump variables from
the current states.

Example 4 The model is simple enough to allow an analytical solution. We
successively replace future inflation with a leaded Phillips-curve to recover

T = BEmi + Ky

T = PE (BEaTi2 + KTig1) + KXy
Ty = KXy + KPExi1 + /QBQEtng + ...
T = /{EtZ%O:tﬂTfth

where we also impose the transversality condition limr_.. Fynrpr = 0. Since
Eyxr = pT~tzy we finally find

T—
T = K?Et (ﬂp) ¢ Tt
K
T = Tt
1-8p
In this example, hence, f(x;) = pxy, g(x:) = =5,%- If we want to recover
the sequences we start from an initial condition say o = 1. We then find

1 =px1+e1, x9 = pr1 + €9, etc. and T = ﬁxl etc.
2.1 Solution method: Matrix decomposition

This section follows lecture notes by Paul Stderlind closely, who in turn builds
on Klein (1997).



We first eliminate the shocks by taking conditional expectations of (1) to get

E, { T1,t+1 } —A { L1t }
T2 t4+1 T2t
Let us do a Schur decomposition of the matrix A.
Lemma 5 Schur decomposition. Given matriz A there exist (possibly complex)

matrices Z and T, where Z is unitary (such that Z"Z = I) and T is upper
triangular with the eigenvalues of A along the diagonal.

A=271T7"

where ZH is the complex conjugate of Z. Replace A with the Schur form,
where the matrices are reordered such that the eigenvalues appear on the di-
agonal of T in accending order (top left has eigenvalue smallest in absolute
value).

Ef T1,t+1 — ZTZH L1t (2)
| T2+l T2t

If the number of eigenvalues with abs (A;) < 1 is exactly equal to ni, then
define
|:5t:|:ZH|:ml,t:| (3)
€t T2t

premultiply (2) with ZH, use that ZZ = I and rewrite as

E, St+1 | _ T St
€i+1 €t
Where s; n1 X 1 and e; is ny x 1. T is by construction upper triangular and the
solution for Fie;41 is hence independent of s;. Separate the two blocks using

Etst—i-l = Tsss + Tseeq
Eierr1 = Teeey.

Note that on the diagonal of T.. we have all the eigenvalues with the property
that A\; > 1. If we solve the second equation forward, we notice that

EteT = (Tee)Tit €t

and hence that e, = 0 for all ¢ is the only possible stationary equilibrium since
otherwise e; will explode (since the diagonal elements of (T..)’ grows towards
infinity). We hence conclude that e; = 0. Plugging this into the first equation,
we see that

Eisiy1 = Tssst

which is a statinoary solution for s;. Multiplying (3) with Z we recover

Tt _ St _ Zss Zse St _ Zss
|:x2,t:|_Z|:et:|_|:Zes Zee:||:6t:|_|:Zes:|St (4)



where the last equality follows since e; = 0 for all ¢, such that

Tt = Zgs5t (5)

Tot = ZesSt (6)

where Zss = Z(1:nl,1;nl) and Zos = Z(n+1:n,1:ny).
Initial conditions: The initial state is assumed to be z1 . From the above
we see that this implies
so =2 w10 (7)

Finally, we put the innovations back.

1441 = Bi&1 141 + €141
We use (5) to rewrite this as
ZssSt+1 = EiZsssip1 + et
si41 = Tsesi+ Zitersn. (8)
(7) together with (8) now represents a full solution for s. Finally, to recover x;

we use (5). We can write

—1 —1 —1
Zss Tit+1 = TSSZSS T1,t + Zss Et4+1

or finally
Tit4+1 = ZssTssZs_sl + Et+1
T2t = ZesZs;lxl,t-
We sum this up:

Theorem 6 Given a system of forward difference equations

T1,t4+1 —A L1t Et+1
= +
[ Eixs 11 } { Ta } { 0 }
with initial condition x1, and where x1 contains ni state variables and xa
contains ng jump variables. An ordered Schur decomposition of A is then two
matrices Z and T such that A = ZTZH | where the sorted eigenvalues are on

the diagonal of T'. If and only if the number of eigenvalues with modulus smaller
than unity equals ny, the unique stable solution to the system is given by

Ti41 = Mg
Tat = C»Tl,t,
where
Zss = Z(l:n1,1:nq)
Zes = Zmi+1:n,1:nq)
Tes = T(1:ny,1:nq)
M = Z.T.2;)
C = ZeZ3)



Example 7 Solving the simple model with the Schur decomposition. The model

18 again
[mtﬂ ]_{ - 0][xt]+[6t+l]
Etﬂ-tJrl —5_15 B_l Tt 0

such thatSince this is a diagonal matriz, we immediately notice that the eigen-
values are p and B*. Assuming k = 0.015, 8 = 0.99 and p = 0.5 such that we
can summarize the model with a system matrix

. 0.5 0
= —0.9971%0.015 0.997! |-

The Schur decomposition of A is

0 1.0101

0.9996 —0.0297
0.0297  0.9996

T - [0.5 0.0152]

7 =

We first notice that the number of stable eigenvalues is 1 which also equals the
number of state variables (x;). Hence, theorem 1 applies and the unique solution
s found through

Zss = 0.9996

Zes = 0.0297

T = 05

M = ZyTesZ,,' =0.9996 % 0.5 % 0.9996 " = 0.5
C = ZsZ; =0.0297%0.9996 1 = 0.0297

Computing C from our analytical solution above, we see that C = k/ (1 — Bp) =
0.015/(1 — 0.99 % 0.5) = 0.0297, the identical answer. The Matlab code that
computes the general model solution is surprisingly simple:

[Z,T] schur (A, ’complex’);
[Z,T] = ordschur(Z,T,’udi’)
n = sum(abs(diag(T)));

Tss = T(1:n,1:n)

Zss = Z(1:n,1:n)

Zes Z(n+l:end,1:n)

iZss = Zss\eye(n)

M = Zss*Tss*iZss;

C Zesx*iZss;



