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1 The setup

We assume that we have a model that can be written in the following form:[
x1,t+1
Etx2,t+1

]
= A

[
x1,t
x2,t

]
+

[
εt+1

0

]
(1)

where x1,t is a n1 × 1 vector with predetermined - or state - variables and x2,t
is a n2 × 1 vector of jump variables.
Let us pause for a moment and think about what this representation means.

For the state variables,

x1,t+1 = A11x1,t +A12x2,t + εt+1

Etxt+2 = A21x1,t +A22x2,t

The first equation illustrates what it means that x1 is predetermined: once
the values of the current states and jump variables are determined, x1,t+1 is
predetermined, up to the effect of the exogenous innovation. Perhaps the most
natural example of a state variable is the capital stock. The capital accumulation
equation is written

Kt+1 = (1− δ)Kt + It

where It is investment. In this model, It is the jump variable to be determined
at time t. Once It is known, Kt+1 is fully determined. This equation then fits
in the notation of the system with x1,t = Kt, x2,t = It, A11 = 1 − δ, A12 = 1,
εt+1 = 0. Of course, further equations would be neded to close this model fully.

Example 1 A reduced form of the NK model. Consider the NK Phillips curve,
but for simplicity assume that the output-gap follows an exogenous process:

πt = βEtπt+1 + κxt

xt = ρxt−1 + εt

We rewrite this model to fit the notation above:[
xt+1
Etπt+1

]
=

[
ρ 0

−β−1κ β−1

] [
xt
πt

]
+

[
εt+1

0

]
.
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2 Definition of solution

What do we mean by a solution to the system of difference equations (1)? There
are two, very related, definitions of equilibrium.

Definition 2 Solution. A solution to (1), given an initial condition x1,0 and
a sequence of the vector of disturbances {εt}∞1 are sequences of {x1,t }∞1 and
{x2,t }∞1 . In normal language, this just say that if we get initial conditions and
a string of exogenous shocks, the solution will be how all the variables in the
system evolve over time.

Definition 3 Solution, alternative. A solution to (1) is provided by the func-
tions f (x1,t) and g (x1,t) such that

x1,t+1 = f (x1,t) + εt+1

x2,t = g (x1,t) .

Here we see that the functions summarize the solution concept in the first def-
inition: given initial conditions and {εt}∞1 , f and g allows us to fully recover
{x1,t }∞1 and {x2,t }∞1 . f tells us how the state variables evolve as a function
only of their own lag + shocks. g tells us how to recover the jump variables from
the current states.

Example 4 The model is simple enough to allow an analytical solution. We
successively replace future inflation with a leaded Phillips-curve to recover

πt = βEtπt+1 + κxt

πt = βEt (βEt+1πt+2 + κxt+1) + κxt

πt = κxt + κβEtxt+1 + κβ2Etxt+2 + ...

πt = κEtΣ
∞
T=tβ

T−txT

where we also impose the transversality condition limT→∞EtπT = 0. Since
EtxT = ρT−txt we finally find

πt = κEt (βρ)
T−t

xt

πt =
κ

1− βρxt

In this example, hence, f (xt) = ρxt, g (xt) = κ
1−βρxt. If we want to recover

the sequences we start from an initial condition say x0 = 1. We then find
x1 = ρ ∗ 1 + ε1, x2 = ρx1 + ε2, etc. and π1 = κ

1−βρx1 etc.

2.1 Solution method: Matrix decomposition

This section follows lecture notes by Paul Söderlind closely, who in turn builds
on Klein (199?).
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We first eliminate the shocks by taking conditional expectations of (1) to get

Et

[
x1,t+1
x2,t+1

]
= A

[
x1,t
x2,t

]
Let us do a Schur decomposition of the matrix A.

Lemma 5 Schur decomposition. Given matrix A there exist (possibly complex)
matrices Z and T , where Z is unitary (such that ZHZ = I) and T is upper
triangular with the eigenvalues of A along the diagonal.

A = ZTZH

where ZH is the complex conjugate of Z. Replace A with the Schur form,
where the matrices are reordered such that the eigenvalues appear on the di-
agonal of T in accending order (top left has eigenvalue smallest in absolute
value).

Et

[
x1,t+1
x2,t+1

]
= ZTZH

[
x1,t
x2,t

]
(2)

If the number of eigenvalues with abs (λi) < 1 is exactly equal to n1, then
define [

st
et

]
= ZH

[
x1,t
x2,t

]
(3)

premultiply (2) with ZH , use that ZHZ = I and rewrite as

Et

[
st+1
et+1

]
= T

[
st
et

]
Where st n1× 1 and et is n2× 1. T is by construction upper triangular and the
solution for Etet+1 is hence independent of st. Separate the two blocks using

Etst+1 = Tssst + Tseet

Etet+1 = Teeet.

Note that on the diagonal of Tee we have all the eigenvalues with the property
that λi > 1. If we solve the second equation forward, we notice that

EteT = (Tee)
T−t

et

and hence that et = 0 for all t is the only possible stationary equilibrium since
otherwise et will explode (since the diagonal elements of (Tee)

j grows towards
infinity). We hence conclude that et = 0. Plugging this into the first equation,
we see that

Etst+1 = Tssst

which is a statinoary solution for st. Multiplying (3) with Z we recover[
x1,t
x2,t

]
= Z

[
st
et

]
=

[
Zss Zse
Zes Zee

] [
st
et

]
=

[
Zss
Zes

]
st (4)
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where the last equality follows since et = 0 for all t, such that

x1,t = Zssst (5)

x2,t = Zesst (6)

where Zss = Z(1 : n1, 1;n1) and Zes = Z(n+ 1 : n, 1 : n1).
Initial conditions: The initial state is assumed to be x1,0. From the above

we see that this implies
s0 = Z−1ss x1,0 (7)

.
Finally, we put the innovations back.

x1,t+1 = Etx1,t+1 + εt+1

We use (5) to rewrite this as

Zssst+1 = EtZssst+1 + εt+1

st+1 = Tssst + Z−1ss εt+1. (8)

(7) together with (8) now represents a full solution for s. Finally, to recover x1
we use (5). We can write

Z−1ss x1,t+1 = TssZ
−1
ss x1,t + Z−1ss εt+1

or finally

x1,t+1 = ZssTssZ
−1
ss + εt+1

x2,t = ZesZ
−1
ss x1,t.

We sum this up:

Theorem 6 Given a system of forward difference equations[
x1,t+1
Etx2,t+1

]
= A

[
x1,t
x2,t

]
+

[
εt+1

0

]
with initial condition x1,0, and where x1 contains n1 state variables and x2
contains n2 jump variables. An ordered Schur decomposition of A is then two
matrices Z and T such that A = ZTZH , where the sorted eigenvalues are on
the diagonal of T . If and only if the number of eigenvalues with modulus smaller
than unity equals n1, the unique stable solution to the system is given by

x1,t+1 = M + εt+1

x2,t = Cx1,t,

where

Zss = Z (1 : n1, 1 : n1)

Zes = Z(n1 + 1 : n, 1 : n1)

Tss = T (1 : n1, 1 : n1)

M = ZssTssZ
−1
ss

C = ZesZ
−1
ss
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Example 7 Solving the simple model with the Schur decomposition. The model
is again [

xt+1
Etπt+1

]
=

[
ρ 0

−β−1κ β−1

] [
xt
πt

]
+

[
εt+1

0

]
such thatSince this is a diagonal matrix, we immediately notice that the eigen-
values are ρ and β−1. Assuming κ = 0.015, β = 0.99 and ρ = 0.5 such that we
can summarize the model with a system matrix

A =

[
0.5 0

−0.99−1 ∗ 0.015 0.99−1

]
.

The Schur decomposition of A is

T =

[
0.5 0.0152
0 1.0101

]
Z =

[
0.9996 −0.0297
0.0297 0.9996

]
We first notice that the number of stable eigenvalues is 1 which also equals the
number of state variables (xt). Hence, theorem 1 applies and the unique solution
is found through

Zss = 0.9996

Zes = 0.0297

Tss = 0.5

M = ZssTssZ
−1
ss = 0.9996 ∗ 0.5 ∗ 0.9996−1 = 0.5

C = ZesZ
−1
ss = 0.0297 ∗ 0.9996−1 = 0.0297

Computing C from our analytical solution above, we see that C = κ/ (1− βρ) =
0.015/(1 − 0.99 ∗ 0.5) = 0.0297, the identical answer. The Matlab code that
computes the general model solution is surprisingly simple:

[Z,T] = schur(A,’complex’);
[Z,T] = ordschur(Z,T,’udi’)
n = sum(abs(diag(T)));
Tss = T(1:n,1:n)
Zss = Z(1:n,1:n)
Zes = Z(n+1:end,1:n)
iZss = Zss\eye(n)
M = Zss*Tss*iZss;
C = Zes*iZss;
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