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1 The model

max
Ct,Ht,Bt+1

Et

∞∑
T=t

U (CT , HT ; ξT )

s.t. PtCt +Bt+1 = WtHt + It−1Bt + Πt + τ tYt +

1∫
0

Dt (i) di

where

U (C,H; ξ) =
C1−σ

−1

1− σ−1 −
1

1 + v

∫ 1

0
H1+v
i di

Notice that the coeffi cient of relative risk-aversion is

−U
′′ (C)

U ′ (C)
C = −

(
−σC̄C−σ−1
C̄C−σ

C

)
= σ.

If we look at the limit when σ approaches one we get log utility, which we now impose.

The first order contions with respect to C,H,B are given by

1

Ct
= λtPt

Hv
t,i = λtW

i
t

λt = βEtλt+1It

where λt is the lagrangian multiplier on the budget constraint for period t. Dividing the first two equations states

that
W i
t

Pt
= Hv

t,iCt (1)
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and hence that the real wage must equal the marginal rate of transformation between consumption and leisure. The

third equation can be expressed as

1 = Et (Qt,t+1It)

Qt,t+1 = β
Ct
Ct+1

Π−1t+1

The firms maximize profits subject to the constraint that they can only revise their price in each period with probability

1− α.
In each period, the profit of firm i is

Di
t = pitY

i
t − TCit

= pitY
i
t −W i

tH
i
t

Theorem 1 The Dixit Stieglitz preferences

Ct =

(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1

implies that individual demand will equal

Y i
t =

(
pit
Pt

)−θ
Yt.

and that aggregate expenditures can be expressed as PtCt with

Pt =

(∫ 1

0
Pt (i)1−θ di

) 1
1−θ

Proof. Consider the consumer minimization problem of selecting Ct (i) optimally to minimize the cost of buying C

units of the consumption aggregate. We omit the time subscript since this is a static problem.

min
C(i)

1∫
0

P (i)C (i) di

s.t.

(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1

= C
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The Lagrangian is

L =

1∫
0

P (i)C (i) di− λ

(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1

− C

 .

The idea is now to take first order conditions with respect to two of the goods, i and j. Use one of the goods

as reference, and express all first-order conditions in relation to the reference good. Next, replace all goods in the

constraint, which finally gives a solution for the reference good. Finally, use that solution to solve for all the other

goods.

P (i)− λ
(∫ 1

0
Ct (i)

θ−1
θ di

) θ
θ−1−1

(C (i))−
1
θ = 0

P (j)− λ
(∫ 1

0
C (i)

θ−1
θ di

) θ
θ−1−1

(C (j))−
1
θ = 0

Divide these two equations to get

P (i)

P (j)
=

(
C (i)

C (j)

)− 1
θ

C (i) =

(
P (i)

P (j)

)−θ
C (j)

Insert this into the constraint to get

∫ 1

0

((
P (i)

P (j)

)−θ
C (j)

) θ−1
θ

di


θ
θ−1

= C

Since P (j) and C (j) are the same in the integral they can be moved outside to get

C = C (j) (P (j))θ
(∫ 1

0

(
(P (i))1−θ

)
di

) θ
θ−1

C (j) =
P (j)−θ(∫ 1

0

(
(P (i))1−θ

)
di
) θ
θ−1

C. (2)
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Hence, the minimum expenditure required to by C units of the consumption good is equal to

1∫
0

P (j)C (j) dj =

1∫
0

P (j)
P (j)−θ(∫ 1

0

(
(P (i))1−θ

)
di
) θ
θ−1

Cdj

=

1∫
0

P (j)1−θ dj

(∫ 1
0

(
(P (i))1−θ

)
di
) θ
θ−1

C

Next, notice that the integral in the nominator and denominator is identical, such that

1∫
0

P (j)C (j) dj =

 1∫
0

P (i)1−θ di

1−
θ
θ−1

C

=

 1∫
0

P (i)1−θ di


1

1−θ

C.

We now define the price index P as the minimum expenditure to buy one unit of the consumption good, such that

P =

 1∫
0

P (i)1−θ di


1

1−θ

.

We now see that if we substitute this definition into (2), we get

C (j) =

(
P (j)

P

)−θ
C.

The production function is Y i
t = AtH

i
t such that the amount of hours needed to produce a given volume of output

is

H i
t =

Y i
t

At
. (3)
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Substituting these expressions into the profit function gives

Di
t = pit

(
pit
Pt

)−θ
Yt −W j

t

1

At

(
pit
Pt

)−θ
Yt

Note the j on the wage in the previous expression. We assume that each good is produced by a large number of

firms. This is to indicate that firm i is so small that it’s decision has no impact on the wage for the type of labour

needed to produce its output. In contrast, if it was the only firm in the sector, it would internalize that to produce

an aditional unit out output, the wage would have to be raised a bit in order to attract enough labour of the required

type. Next, we discount the future with the stochastic discount factor as well as with the Calvo-probability and look

at the expected profits during the expected life of the price.

∂

∂pit
Et

∞∑
T=t

αT−tQt,T

(
pit

(
pit
PT

)−θ
YT −W j

T

1

AT

(
pit
PT

)−θ
YT

)
= 0

∂

∂pit
Et

∞∑
T=t

αT−tQt,T

((
pit
)1−θ

P θTYT −
(
pit
)−θ

W j
T

1

AT

(
1

PT

)−θ
YT

)
= 0

Et

∞∑
T=t

αT−tQt,T

(
(1− θ)

(
pit
PT

)−θ
YT + θ

(
pit
)−θ−1

W j
T

1

AT

(
1

PT

)−θ
YT

)
= 0

Et

∞∑
T=t

αT−tQt,T

((
pit
)−θ−(−θ−1)

(1− θ)
(

1

PT

)−θ
YT + θW j

T

1

AT

(
1

PT

)−θ
YT

)
= 0

Et

∞∑
T=t

αT−tQt,T

((
pit
)

(1− θ)
(

1

PT

)−θ
YT + θW j

T

1

AT

(
1

PT

)−θ
YT

)
= 0 (4)

Next, we substitute (3) into (1) to get

W j
t = Pt

(
Y j
t

At

)v
Ct

and use that all firms in sector j sets the same price, equal to pit, and hence get demand

W j
t = Pt

(
1

At

(
pit
Pt

)−θ
Yt

)v
Ct

W j
t = Pt

(
pit
)−θv ( 1

At
P θt Yt

)v
Ct (5)
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(5) into (4) gives

Et

∞∑
T=t

αT−tQt,T

(
pit (1− θ)P θTYT + θPT

(
pit
)−θv ( 1

AT
P θTYT

)v
CT

1

AT
P θTYT

)
= 0

Et

∞∑
T=t

αT−tQt,T

(
pit (1− θ)P θTYT + θPT

(
pit
)−θv

CT

(
1

AT
P θTYT

)1+v)
= 0

Et

∞∑
T=t

αT−tQt,T

((
pit
)1+θv

(1− θ)P θTYT + θPTCT

(
1

AT
P θTYT

)1+v)
= 0

(
pit
)1+vθ

Et

∞∑
T=t

αT−tQt,TP
θ
TYT =

θ

θ − 1
Et

∞∑
T=t

αT−tQt,T

(
P
1+θ(1+v)
T CT

(
YT
AT

)1+v)
Next, substitute the stochastic discount factor

(
pit
)1+vθ

Et

∞∑
T=t

(αβ)T−t
CtPt
CTPT

P θTYT =
θ

θ − 1
Et

∞∑
T=t

(αβ)T−t
CtPt
CTPT

(
P
1+θ(1+v)
T CT

(
YT
AT

)1+v)

The term CtPt appears in all terms in both sums and hence drops out. We can hence write this as

(
pit
)1+vθ

Et

∞∑
T=t

(αβ)T−t
1

CT
P θ−1T YT =

θ

θ − 1
Et

∞∑
T=t

(αβ)T−t
(
P
θ(1+v)
T

(
YT
AT

)1+v)
(6)

Finally, we note that 1 + vθ + θ − 1 = θ (1 + v), and thus if we divide both sides with P θ(1+v)t and use that Ct = Yt

we get (
pit
Pt

)1+vθ
=

Kt

Ft
(7)

Kt = Et
θ

θ − 1

∞∑
T=t

(αβ)T−t
((

PT
Pt

)θ(1+v)( YT
AT

)1+v)

Ft = Et

∞∑
T=t

(αβ)T−t
(
PT
Pt

)θ−1
.

These expressions are found in Woodford (2011) eqn (50) - (54), apart from the fact that I have already used log-

preferences from the start and have hence assumed σ̃ = 1 in his notation.

Let us summarize: (7) corresponds to a non-linear Phillips curve where the optimal price set today is related to
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current and expected future marginal cost conditions.

These equations can be recursified. Starting with F , note that

Ft+1 = Et+1

∞∑
T=t+1

(αβ)T−(t+1) (1− τT )

(
PT
Pt+1

)θ−1
.

If we multiply this with αβ
(
Pt+1
Pt

)θ−1
and take expectation at t

Etαβ

(
Pt+1
Pt

)θ−1
Ft+1 = EtEt+1

∞∑
T=t+1

(αβ)T−t
(
PT
Pt

)θ−1
.

But due to the law of itterated expectations, the right-hand side here is equivalent to Ft, apart from the term when

T = t. Hence,

Ft = 1 + αβEt

(
Πθ−1
t+1Ft+1

)
(8)

where we have defined Πt = Pt/Pt−1M .

Similarly, by multiplying Kt+1 with αβΠ
θ(1+ω)
t+1 and taking expectations and subtracting Kt we get that

Kt =
θ

θ − 1

(
Yt
At

)1+v
+ αβEtΠ

θ(1+v)
t+1 Kt+1 (9)

Next, we use the definition of the price-index to link changes in the optimal price to changes in the inflation rate.

The logic is that only the firms that actually change prices contibutes to inflation, since the other prices are fixed.

Since the chance of changing the price is equal for all firms, the integral of the unchanged part of the price-index

must equal the previous periods price-index, adjusted for the "thinning out". Hence, from the definition of the price

index,

P 1−θt =

∫ 1

0

(
P it
)1−θ

di = (1− α) (p∗t )
1−θ + αP 1−θt−1

Dividing through with P 1−θt gives

1 = (1− α)

(
p∗t
Pt

)1−θ
+ αΠθ−1

t (10)

Substituting (7) into (10) gives

1 = (1− α)

(
Kt

Ft

) 1−θ
1+ωθ

+ αΠθ−1
t
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To summarize, the full set of first order conditions can be summarized by

1 = (1− α)

(
Kt

Ft

) 1−θ
1+ωθ

+ αΠθ−1
t (11)

Ft = 1 + αβEt

(
Πθ−1
t+1Ft+1

)
Kt =

θ

θ − 1

(
Yt
At

)1+v
+ αβEtΠ

θ(1+v)
t+1 Kt+1

1

It
= βEt

(
Yt
Yt+1

Π−1t+1

)
This amounts to 4 equations for 5 endogenous variables. Something needs to pin down the nominal side of the

economy, and we will close the model with a Taylor-type rule.

It = I

(
Πt

Π∗

)χ
expet .

1.1 The steady state

We start by examining the steady state of the above system. The fourth eqation gives

I = β−1Π

The policy rule then gives

Π = Π∗

since by assumption the steady state level of the shock is zero. Lets work with Π∗ = 1. Then the first equation

implies

1 =

(
K

F

) 1−θ
1+ωθ

F =
1

1− αβ

K =
1

1− αβ
θ

θ − 1
Y 1+v
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Dividing K with F and inserting this into the first equation gives

1

1− αβ =
1

1− αβ
θ

θ − 1
Y 1+v

1 =
θ

θ − 1
Y 1+v

This pinns down Y as a function of the model parameters.

Y =

(
(θ − 1)

θ

) 1
1+v

1.2 The flex-price equilibrium

Let us assume that prices are fully flexible. Going back to equations (7), with α = 0 this reduces to

(
pit
Pt

)1+vθ
=

Kt

Ft

Kt =
θ

θ − 1

((
Yt
At

)1+v)
Ft = 1.

Since prices are flexible, pit = Pt and we get

θ

θ − 1

((
Y n
t

At

)1+v)
= 1 (12)

This equation implicity defines Y n
t as a function of the exogenous shocks.

Next, consider a one-period asset that at time t + 1 delivers Pt+1
Pt

dollars, which hence fully insures its owner

against inflation. The return on this asset is given by

1

Rnt
= Et

(
Qt,t+1

Pt+1
Pt

)
1

Rnt
= Et

(
β
Ct
Ct+1

Pt
Pt+1

Pt+1
Pt

)
1

Rnt
= Et

(
β
Yt
Yt+1

)
(13)
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Here, Rnt is the natural real rate. The equations (12) and (13) together define the flex-price equilibrium in this

economy. Given these definition, it is now possible to examine a different policy rule, of the kind

It = Rnt

(
Πt

Π∗

)χ
exp εit.

In an equilibrium with zero steady-state inflation and an effi cient production subsidy that eliminates the ineffi ciently

low output associated with monopolistic competition, this will amount to stabilizing output at its natural rate and

lead to zero inflation, for all shocks except the monetary policy shock.

1.2.1 Log-linearization

1.3 Preliminaries

I think of log-linearizations the following way. We want to end up with a model approximated in log-deviations

from steady state. That is, the non-linear equation Yt = f (Xt) should be transformed into Ŷt = cX̂t, where

Ŷt = log Yt− log Y , where Y is the steady state value of Yt. I think the most precise way to introduce log-linearization

is to rewrite the equation the following way:

exp (log Yt) = f (exp (logXt))

which is fine for all variables that are strictly greater than zero. Then, define the new variable yt = log Yt etc. and

write

exp (yt) = f (expxt)

with y = log Y and x = logX. Now linearize this equation around y and x. A first-order Taylor expansion gives

exp (y) (yt − y) = exp (x) f ′ (expx) (xt − x)

Y (yt − y) = Xf ′ (X) (xt − x)

Depending on the shape of f , sometimes the steady state relationship can be used to simplify the above expression.

We can alternatively skip the rewriting step and instead directly take derivatives with respect to log Yt, using the
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rules

∂Yt
∂ log Yt

=
∂ exp (log Yt)

∂ log Yt
= Yt (14)

∂f (Yt)

∂ log Yt
= f ′ (Yt)

∂Yt
∂ log Yt

= f ′ (Yt)Yt

1.3.1 Log-linearizing the model equations

1 = (1− α)

(
Kt

Ft

) 1−θ
1+vθ

+ αΠθ−1
t (15)

Ft = 1 + αβEt

(
Πθ−1
t+1Ft+1

)
Kt =

θ

θ − 1

(
Yt
At

)1+v
+ αβEtΠ

θ(1+v)
t+1 Kt+1

1

It
= βEt

(
Yt
Yt+1

Π−1t+1

)
We start by log-linearizing the equation for F .

We need to think carefully about the way we treat the shocks. With the notation above, At is the level of

productivity. We can now proceed to the calculations. First F:

FF̂t = αβEt

(
(θ − 1)F Π̂t+1 + FF̂t+1

)
F̂t = αβEt

(
(θ − 1) Π̂t+1 + F̂t+1

)
(16)

K̂t = (1− αβ) (1 + v)
(
Ŷt − Ât

)
+ αβEt

(
θ (1 + ω) Π̂t+1 + K̂t+1

)
. (17)

The 1 = (1− α)
(
Kt
Ft

) 1−θ
1+vθ

+ αΠθ−1
t equation can be written

(
1− αΠθ−1

t

(1− α)

) 1+vθ
1−θ

=
Kt

Ft
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from which we can see that in a zero-inflation steady state, K = F . Log-linearization gives

−α (θ − 1)

1− α
1 + vθ

1− θ

(
1− αΠθ−1

(1− α)

) 1+vθ
1−θ −1

Π̂t =
1

F
KK̂t −

K

F 2
FF̂t

α (1 + vθ)

1− α Π̂t = K̂t − F̂t (18)

Subtracting (16) from (17) yields

K̂t − F̂t = (1− αβ) (1 + v)
(
Ŷt − Ât

)
+ αβEt

(
(1 + θv) Π̂t+1 + K̂t+1 − F̂t+1

)
Using (18) in the above gives

α (1 + vθ)

1− α Π̂t = (1− αβ) (1 + v)
(
Ŷt − Ât

)
+ αβEt

(
(1 + θω) Π̂t+1 +

α (1 + ωθ)

1− α Π̂t+1

)
Π̂t = (1− α) (1− αβ)

(1 + v)

α (1 + vθ)

(
Ŷt − Ât

)
+

(1− α)αβ

α (1 + vθ)
Et

(
(1 + θv) Π̂t+1 +

α (1 + vθ)

1− α Π̂t+1

)
Π̂t =

(1− α) (1− αβ)

α

(1 + v)

(1 + vθ)

(
Ŷt − Ât

)
+ βEt

(
(1− α) Π̂t+1 + αΠ̂t+1

)
wich finally allows us to write

Π̂t = κ
(
Ŷt − Ât

)
+ βEtΠ̂t+1.

It is instructive to redo these calculations for the flex-price case.

1.3.2 Log-linearizing the flex-price case

With a = 0, we write the equations using Woodfords notation above as(
pit
Pt

)1+vθ
=

Kt

Ft

Kt =
θ

θ − 1

(
Y n
t

At

)1+v
Ft = 1

Since the relative price in the flex-price equilibrium will equal one by definition, we get that Y n
t is the solution to

1 =
θ

θ − 1

(
Y n
t

At

)1+v
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Taking logs and subtracting steady state,

Ŷ n
t = Ât

which inserted in (??) finally gives
Π̂t = κ

(
Ŷt − Ŷ n

t

)
+ βEtΠ̂t+1.
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