Assignment 1 - log-linearization, due date: Monday 18/5, handed in by email before class 13.15.

- 1. The utility function $U(c) = \frac{c^{1-\gamma}}{1-\gamma}$ is standard in much of the macro-lit we will examine.
 - (a) Compute the elasticity of substitution.
 - (b) Compute the relative risk-aversion (definition of relative risk-aversion is $R = \frac{U''(C)C}{U'(C)}$ Compute R for the utility function U(C) above.). Compare to (a), conclusion?
 - (c) Discuss why the functional form is convenient (and hopefully a good approximation of the truth!) when there is growth in the economy.
- 2. Regular Taylor expansions: do the below exercise for two values of γ : 1.01 and 6. Compare results. Let $U(c) = \frac{c^{1-\gamma}}{1-\gamma}$
 - (a) Compute the marginal utility of consumption.
 - (b) Compute a Taylor-expansion of the marginal utility around the point c = 0.9.
 - (c) Compute the true marginal utility when consumption is 1, that is $\frac{dU}{dx}(1)$. Compare this with your Taylor-expansion at the same point and compute the approximation error.
 - (d) Redo (c) but now when c = 1.1. Conclusion?
 - (e) Repeat (b) (d) but instead linearize (Taking a first-order Taylor expansion) around the point c = 1.05. Conclusion?
- 3. Log-linearizations
 - (a) Log-linearize (instead of linearize) the marginal utility of consumption from 2(a) to a first-order around the point c = 0.9.
 - (b) Compare the true marginal utility when consumption is 1 from 2(c) with your log linear approximation at the same point and compute the approximation error.
 - (c) Redo (b) but now when c = 1.1. Conclusion?
 - (d) Repeat (a) (c) but instead log-linearize around the point c = 1.05. Conclusion?
- 4. Consider the aggregate resource constraint

$$Y = C + I + G$$

where C is consumption and I is investmentment and G is government consumption.

(a) Linearize and write in difference from steady state.

- (b) Log-linearize and write in log-difference from steady state.
- (c) What is the difference in interpretation between $Y \overline{Y}$ and $\log Y \log \overline{Y}$?
- 5. Consider the inter-temporal Euler-equation

$$C_t^{-\sigma} = \beta E_t \left(C_{t+1}^{-\sigma} r_t \right)$$

- (a) Assume that C_t is stationary (no-growth). Find the steady state for the real interest rate.
- (b) Log-linearize around an assumed steady state.
- (c) Explain intuitively why the discount factor β is not part of the loglinearized equations.
- 6. Let the Euler-equation be

$$U'(C_t) = \beta E_t \left(U'(C_{t+1}) \frac{R_t}{\Pi_{t+1}} \right)$$

where R_t is the nominal interest rate and Π_t is gross inflation (P_t/P_{t-1}) . Log-linearize this equation to a first order and describe the only feature of the utility function that will have an impact on the approximate equation.

7. Assume that

$$U(C_t, N_t) = \frac{C_t^{1-\gamma}}{1-\gamma} - \frac{N_t^{1+\phi}}{1+\phi}$$

$$P_t C_t + B_t = W_t N_t + (1+r_{t-1}) B_{t-1} + D_t$$

and that consumers maximize the expected discounted stream of current and future utility, where B_t is the amount invested in bonds at time t that will mature in t + 1 and D_t is dividends from firms.

Assume perfect competition both at the product and labour markets and let firms hire workers at the nominal wage W_t . Let the production function be

$$Y_t = A_t H_t^{\alpha}$$
$$\log A_t = \rho \log A_{t-1} + \varepsilon_t$$

where ε_t is iid normal with variance σ^2 , and where $\alpha < 1$.

- (a) Set up the intertemporal consumer problem and take first-order conditions.
- (b) Maximize profits for firms.

- (c) Solve for the steady state.
- (d) Try to solve the model analytically. Hint: it is not too hard to compute the expected value of a variable that has a log-normal distribution.
- (e) Log-linearize the model and solve for the approximate real equilibrium.
- (f) Calculate the effect of a technology shock on output, real wages and employment. Discuss how various parameters affect the solution.
- (g) Assume that $\rho = 1$. What problem does this introduce for the loglinearization (same as for linearization)? Show how to deal with it and redo the computation.